

2. One of the main constituents of acid deposition is sulfuric acid, H₂SO₄. This acid is formed from the sulfur dioxide pollutant, SO₂.

A mechanism proposed for its formation is:

$$\begin{aligned} & \text{HO}\bullet(g) + \text{SO}_2(g) \rightarrow \text{HOSO}_2(g) \\ & \text{HOSO}_2(g) + \text{O}_2(g) \rightarrow \text{HOO}\bullet(g) + \text{SO}_3(g) \\ & \text{SO}_3(g) + \text{H}_2\text{O}(l) \rightarrow \text{H}_2\text{SO}_4(aq) \end{aligned}$$

(i) State what the symbol (•) represents in the species shown in this mechanism.

Radical or unprised electron					

(ii) Draw one valid Lewis (electron dot) structure for each molecule below.

[2]

[1]

Molecule	Lewis (electron dot) structure
SO_2	:Ö-S=Ö.
H ₂ O	H-0H

(This question continues on the following page)

(Question 2 continued)

(iii) Deduce the name of the electron domain geometry and the molecular geometry for each molecule.

[2]

	Electron domain geometry	Molecular geometry
SO ₂	Trigunal planar	Bent
H ₂ O	retrahedra!	Bent

(iv)	Deduce the	bond	angles in	n SO ₂ and	H_2O .
------	------------	------	-----------	-----------------------	----------

[1]

SO ₂ :	119° (115-120° accepted	
H₂O:	104.5	
	••••••	

(This question continues on the following page)

(Question 2 continued)

(v) Consider the following equilibrium between the two oxides of sulfur, sulfur dioxide and sulfur trioxide:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -198 \text{ kJ}$

Predict, with a reason, in which direction the position of equilibrium will shift for each of the changes listed below. [3]

Change	Shift	Reason	
Increase in temperature	Left	reaction is exothernic	
Increase in pressure	Right	of gas \mus	te!
Addition of a catalyst to the mixture	None	affects forward and reverse rates equally	

(vi) Sketch the potential energy profile for the forward reaction in part (v) to show the effect of a catalyst on the activation energy, $E_{\rm act}$.

Potential energy

Neactorts

Progress of reaction

Potential energy

Progress of reaction

Progress of reaction

(This question continues on the following page)

Turn over

(Question 2 continued)

(vii) Sulfuric acid, H₂SO₄, can be described as a Brønsted-Lowry acid. State what you understand by this description.

[1]

Hasoy is a proton donor

(viii) The hydrogen sulfate anion, HSO_4^- , is amphiprotic, so can act as an acid or a base. In the reaction of HSO_4^- with the hydronium cation, H_3O^+ , identify the two species acting as bases.

 $HSO_4^-(aq) + H_3O^+(aq) \rightleftharpoons H_2SO_4(aq) + H_2O(1)$

[1]

HSOY and

(ix) Other compounds present in acid rain are formed from nitrogen dioxide, NO₂. Formulate an equation for the reaction of nitrogen dioxide with water.

[1]

2NO2+ H20 > HNO3 + HNO2

(e) With reference to section 9 of the data booklet, explain the difference between the atomic radius and the ionic radius of nitrogen.

[1]

Ionic radius is 146pm which is greater than 71 pm for the atomic radius. This is due to the increased repulsion of electrons for N3-