

Section A

Answer all questions. Write your answers in the boxes provided.

1. Ethanedioic acid is a diprotic acid. A student determined the value of x in the formula of hydrated ethanedioic acid, HOOC-COOH•xH₂O, by titrating a known mass of the acid with a 0.100 mol dm⁻³ solution of NaOH(aq).

0.795 g of ethanedioic acid was dissolved in distilled water and made up to a total volume of 250 cm³ in a volumetric flask. — a co.

25 cm³ of this ethanedioic acid solution was pipetted into a flask and titrated against aqueous sodium hydroxide using phenolphthalein as an indicator.

The titration was then repeated twice to obtain the results below.

Volume of 0.100 mol dm ⁻³ NaOH / cm ³	Titration 1	Titration 2	Titration 3
Final burette reading (± 0.05)	13.00	25.70	38.20
Initial burette reading (± 0.05)	0.00	13.00	25.70
Volume added	13.00	12.70	12.50

(a) Calculate the average volume of NaOH added, in cm³, in titrations 2 and 3, and then calculate the amount, in mol, of NaOH added.

[2]

(12.70+12.50)/a = 12.60C	m ³
0.01260 dm x 0.100 mol =	10.00126mol/
dm	

(This question continues on the following page)

(Question 1 continued)

(b) (i) The equation for the reaction taking place in the titration is:

Call 2 O 4HOOC-COOH (aq) + 2NaOH (aq) \rightarrow NaOOC-COONa (aq) + 2H₂O(l)

Determine the amount, in mol, of ethanedioic acid that reacts with the average volume of NaOH (aq).

[1]

0.00126mo1NaOH 1mol 2 6.30x104 mol

(ii) Determine the amount, in mol, of ethanedioic acid present in 250 cm³ of the original solution.

[1]

250. cm x 6.30 x10 mol = 6.30 x10 mol

(iii) Determine the molar mass of hydrated ethanedioic acid.

[1]

0.795g = 126g moj 1

(iv) Determine the value of x in the formula HOOC-COOH•xH2O.

[2]

 $M_{r}(c_{1}H_{2}O_{4}) = 90.04 | M_{r}(H_{2}O) = 18.00$ $M_{r}(c_{1}H_{2}O_{4}) = 90.04 = 35.96$ $X = \frac{35.96}{18.02} = |27$

(c) Identify the strongest intermolecular force in solid ethanedioic acid.

[1]

Hydrogen bonds

Ľ,

(This question continues on the following page)

HO - C-

(Question 1 continued)

Deduce the Lewis (electron dot) structure of ethanedioic acid, HOOC-COOH.

[1]

H-Ö-C-C-Ö-H

'must show all bonds + lone pairs!

HL

Predict and explain the difference in carbon-oxygen bond lengths in ethanedioic acid and its conjugate base, "OOC-COO".

[3]

Acid: Each carbon has one double bond (shorter and one single bond (longer).

Base: *Resonance occurs on each carbon.

All carbon-oxygen bonds the same,

1.5 bonds, C=--O

