M09/4/CHEMI/SPM/ENG/TZ1/XX

CHEMISTRY STANDARD LEVEL PAPER 1)

Monday 18 May 2009 (afternoon)

45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- · Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.

00 (-4:10

eriodic Table	
2	
2	
2	
	•
-	
Ciic	
Ë	•
Ξ	:
Ξ	
_	
	•
	5
.=	2
	•
\sim	•
0.1	•
_	
_	
	۰
_	
9	,
	٠
_	٠
Ξ	
	•
_	

2 He 4.00	9 10 F Ne 19.00 20.18	17 18 CI Ar 35.45 39.95	35 36 Br Kr 79.90 83.80	53 54 1 Xe 10 126.90 131.30	85 86 At Rn (210) (222)	
	8 O 10.91	5 16 S 5 97 32.06	3 34 s Se 92 78.96	1 52 3 Te 75 127.60	3 84 i Po .98 (210)	
	6 7 C N 12.01 14.01	Si P Si P 28.09 30.97	32 33 Ge As 72.59 74.92	50 51 Sn Sb 118.69 121.75	82 83 Pb Bi 207.19 208.98	
	5 B 10.81	13 Al 26.98 28	31 3 Ga C 69.72 72	49 8 114.82 118	81 8 T1 1 1 204.37 20°	
	l		30 Zn 65.37	48 Cd 112.40	80 Hg 200.59	
			29 Cu 63.55	47 A g 107.87	79 Au 196.97	
			28 Ni 58.71	46 Pd 106.42	78 Pt 195.09	
			27 Co 58.93	45 Rh 102.91	77 Ir 192.22	
			26 Fe 55.85	44 Ru 101.07	76 Os 190.21	
			25 Mn 54.94	43 Te 98.91	75 Re 186.21	
Atomic Number	Element Atomic Mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85	
Atomic	Ele Atomi		23 V. 50.94	41 Nb 92.91	73 Ta 180.95	
			22 Ti 47.90	40 Zr 91.22	72 Hf 178.49	
			21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac
	4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra
- = 0.	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr

+	58	59	09	19	62	63	25	65	99	29	89	69	70	7.1
	Ç	Pr	Z	Pm	Sm	Eu	РS	Ē	Dy	Но	Er	Tm	Yb	Lu
	140.12	140.91	144.24	146.92	150.35	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97
++	90		92	93	94	95	96	76	86	66	100	101	102	103
	TI	Pa	U	dN 25	Pu	Am	Cm	Bk	כ	Es	Fm	Md	No	Lr
	727.04		238.03	(757)	(747)	(543)	(747)	(747)	(157)	(524)	(757)	(857)	(524)	(790)

- The molar mass of a compound is approximately 56 g mol⁻¹. Which formula is possible for this 1. compound?
 - NaNO, A.
 - В. AgOH
 - MgO
 - KOH
- Which compound has the empirical formula with the largest mass? 2.

- B. C2H4 CHE
- C. $C_{2}H_{2}$ C/+D. $C_{3}H_{6}$ C/+2
- What is the coefficient for O₂(g) when the equation for the combustion of 1 mole of pentane is 3. balanced?

$$C_5H_{12}(g) = S_{O_2}(g) \rightarrow S_{CO_2}(g) + S_{H_2O}(g)$$

- 5
- В. 6

D. 16 4. What is the maximum mass, in g, of magnesium oxide that can be obtained from the reaction of oxygen with 2.4 g of magnesium?

5. $5 \text{ dm}^3 \text{ of carbon monoxide, CO(g), and 2 dm}^3 \text{ of oxygen, O}_2(g)$, at the same temperature and pressure are mixed together. Assuming complete reaction according to the equation given, what is the maximum volume of carbon dioxide, $CO_2(g)$, in dm³, that can be formed?

6. Which statement about solutions is correct?

5.6

- A. When vitamin D dissolves in fat, vitamin D is the solvent and fat is the solute.
- B. In a solution of NaCl in water, NaCl is the solute and water is the solvent.
 - C. An aqueous solution consists of water dissolved in a solute.
 - D. The concentration of a solution is the amount of solvent dissolved in 1 dm³ of solution.

7. How many protons, neutrons and electrons are present in each atom of ³¹P?

	Protons	Neutrons	Electrons
A.	16	15	16
(B.)	15	16	15
C.	15	31	15
D.	16	31	16

8. Which is correct for the following regions of the electromagnetic spectrum?

	U	V	I	R
(A)	high energy 🖊	short wavelength	low energy	low frequency
В.	high energy	low frequency	low energy	long wavelength
C.	high frequency	short wavelength	high energy	long wavelength
D.	high frequency	long wavelength	low frequency	low energy

9. An element is in group 4 and period 3 of the periodic table. How many electrons are in the highest occupied energy level of an atom of this element?

C. 12

D. 14

10. Which is the best definition of *electronegativity*?

- A. Electronegativity is the energy required for a gaseous atom to gain an electron.
- B. Electronegativity is the attraction of an atom for a bonding pair of electrons.
 - C. Electronegativity is the attraction between the nucleus and the valence electrons of an atom.
 - D. Electronegativity is the ability of an atom to attract electrons from another atom.

11. What are the correct formulas of the following ions?

	Ammonium	Hydrogencarbonate	Phosphate
A.	$\mathrm{NH_4}^+$	HCO ₃ ²⁻	PO ₄
B.	NH_3^{\dagger}	HCO ₃	PO ₄ ³⁻
C.	NH₄ ⁺	HCO ₃ ²⁻	PO ₄ ²⁻
(D)	NH ₄ ⁺	HCO ₃ ⁻	PO ₄ ³⁻

12. What happens when magnesium metal reacts with chlorine gas?

- A. Each magnesium atom loses two electrons and each chlorine atom gains two electrons.
- B. Each magnesium atom gains one electron and each chlorine atom loses one electron.
- C. Each magnesium atom loses two electrons and each chlorine atom gains one electron.
 - D. Each magnesium atom gains one electron and each chlorine atom loses two electrons.

13. Which is the best description of ionic bonding?

- Λ. The electrostatic attraction between positively charged nuclei and an electron pair
- B. The electrostatic attraction between positive ions and delocalized negative ions
- C. The electrostatic attraction between positive ions and delocalized electrons
 - The electrostatic attraction between oppositely charged ions

- 14. Which is the best description of the bonding present in silicon dioxide, SiO₂?
 - A. Each silicon atom forms four single covalent bonds to oxygen atoms.
 - (B.) Each silicon atom forms two double covalent bonds to oxygen atoms.
 - C. Each silicon atom forms two single covalent bonds to oxygen atoms.
 - D. Each silicon atom forms four double covalent bonds to oxygen atoms.
- 15. When some solid barium hydroxide and solid ammonium thiosulfate were reacted together, the temperature of the surroundings was observed to decrease from $15\,^{\circ}\text{C}$ to $-4\,^{\circ}\text{C}$. What can be deduced from this observation?
 - A. The reaction is exothermic and ΔH is negative.
 - B. The reaction is exothermic and ΔII is positive.
 - C. The reaction is endothermic and ΔH is negative.
 - \bigcirc The reaction is endothermic and $\triangle H$ is positive.
- 16. Which process represents the C-Cl bond enthalpy in tetrachloromethane?

(A.)
$$CCl_{a}(g) \rightarrow C(g) + 4Cl(g)$$

- B. $CCl_4(g) \rightarrow CCl_3(g) + Cl(g)$
- C. $CCl_4(1) \rightarrow C(g) + 4Cl(g)$
- D. $CCl_4(1) \rightarrow C(s) + 2Cl_2(g)$

17.	Some water is heated using the heat produced by the combustion of magnesium metal.	Which values
	are needed to calculate the enthalpy change of reaction?	

- I. The mass of magnesium
- II. The mass of the water
- III. The change in temperature of the water
- A. I and II only

DHO

AH = Brxn

- B. I and III only
- C. II and III only
- D. I, II and III

18. What is the best definition of rate of reaction?

- A. The time it takes to use up all the reactants
- B. The rate at which all the reactants are used up
- C. The time it takes for one of the reactants to be used up

19. According to the collision theory, which factors affect reaction rate?

- I. The state of the reactants
- II. The frequency of the collisions between particles
- III. The average kinetic energy of the particles
- A. I and II only
- B. I and III only
- C. II and III only
 - D. I, II and III

-9-

21. Consider the following equilibrium reaction.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H^{\oplus} = -197 \text{ kJ}$

Which change in conditions will increase the amount of SO₃ present when equilibrium is re-established?

- A. Decreasing the concentration of SO₂
- B. Increasing the volume

C. Decreasing the temperature (nerroves hert, which is a product)

D. Adding a catalyst

- For equal volumes of 1.0 mol dm⁻³ solutions of hydrochloric acid, HCl(aq), and methanoic acid, 22. HCOOH (aq), which statements are correct?
 - HCl dissociates more than HCOOH I.
 - HCl is a better electrical conductor than HCOOH II.

HCl will neutralize more NaOH than HCOOH

I and II only

- В. I and III only
- C. II and III only
- D. I, II and III
- When equal volumes of four 0.1 mol dm⁻³ solutions are arranged in order of increasing pH 23. (lowest pH first), what is the correct order?
 - CH3COOH < HNO3 < CH3CH3NH3 < KOH A.
 - HNO₃ < CH₃COOH < CH₃CH₃NH₃ < KOH
 - CH₃CH₂NH₃ < HNO₃ < CH₃COOH < KOH C.
 - KOH < CH₃CH₂NH₂ < CH₃COOH < HNO₃ D.

HNO3-Strong Acid CH3COOH-WELL Acid HOH - Strong Base

24. What happens at the negative electrode in a voltaic cell and in an electrolytic cell?

		777000
	Voltaic cell	Electrolytic cell
(A.)	oxidation	reduction
В.	reduction	oxidation
C. 1	oxidation	oxidation
D.	reduction	reduction

- 25. Consider how current is conducted in an electrolytic cell. Which statement is correct?
 - A. Electrons move through the electrolyte and the external circuit.
 - B. Ions move through the electrolyte and the external circuit.
 - (C.) Electrons move through the external circuit and ions move through the electrolyte.
 - D. Electrons move through the electrolyte and ions move through the external circuit.
- **26.** Which three compounds can be considered to be a homologous series?

- B. CH₃CH₂OH, CH₃CHO, CH₃COOH
- C. CH₃CH₂CH(OH)CH₃, CH₃CH₂CH₂CH₂OH, (CH₃)₃COH
- D. CH₃CH₂CH₂CH₂OH, CH₃CH₂OCH₂CH₃, (CH₃)₂CH₂CHO
- 27. What is the IUPAC name for CII₃CII₂CII(CH₃)CH₃?

D. 3-methylbutane

- 28. When bromine water is shaken with a liquid organic compound, it is rapidly decolourized. What can be determined from this test?
 - A. The compound is an alcohol.
 - B. The compound is an alkane.

C. The compound is an alkene.

D. The compound is an iodoalkane.

A test for an unsaturated hydrocurbor?

Brz + CHz=CHz > CHz-CHz

(Brown)

Br Br

(Colonless)

- Which conditions are required to obtain a good yield of a carboxylic acid when ethanol is oxidized using potassium dichromate(VI), K₂Cr₂O₇(aq)?

 I. Add sulfuric acid

 II. Heat the reaction mixture under reflux

 III. Distil the product as the oxidizing agent is added

 A I and II only

 B. I and III only

 CH3-CH2

 CH3-CH4

 CH3-C-OH

 CH3-C-OH
- 30. A student recorded the volume of a gas as 0.01450 dm³. How many significant figures are there in this value?
 - A. 3

C. 5

D. 6