Nam	ne		SL Score	
		Exam: Paper 2 Bonding	/48	
SL				
1.	Expl	ain why:		
	(i)	calcium has a higher melting point than potassium.		
				(2)
	(ii)	sodium oxide has a higher melting point than sulfur trioxide.		
2.	Desc	ribe and compare three features of the structure and bonding in the three allotronite and C_{60} fullerene.	opes of carbon: diamono	(3) d,

Draw	v the L	ewis structure of CO ₂ and predict its shape and bond angle.	
Desc	ribe th	he structure and bonding in SiO_2 .	
Expl	ain wh	y silicon dioxide is a solid and carbon dioxide is a gas at room temperature.	
Expl	ain the	e electrical conductivity of molten sodium oxide 2.	
•••••			
Ether	ne, C_2	H ₄ , and hydrazine, N ₂ H ₄ , are hydrides of adjacent elements in the periodic table.	
(a)	(i)	Draw Lewis (electron dot) structures for $\mathrm{C_2H_4}$ and $\mathrm{N_2H_4}$ showing all valence electrons.	
	(ii)	State and explain the H–C–H bond angle in ethene and the H–N–H bond angle in hydrazine.	

	(cont	i.)												
	(b)	The polarity of a molecule can be explained in terms of electronegativity.												
		(i)	Define the term electronegativity.	(2)										
		(ii)	Compare the relative polarities of the C–H bond in ethene and the N–H bond in hydrazine.	(1)										
		(iii)	Hydrazine is a polar molecule and ethene is non-polar. Explain why ethene is non-polar.											
8.	(i)	Drav	v the Lewis structures for carbon monoxide, CO, carbon dioxide, CO ₂ and methanol, CH ₃ OH.	(1)										
		ist, wi	ith an explanation, the three compounds in order of increasing carbon to oxygen bond length rst).	(3)										
9.	Pred:	ict the CO_2	shape and bond angles for the following species:	(2)										
	(ii)	CO ₃		(2)										
	(-)	3												

(iii) BF₄

(2)

(2)

10. The graph below shows the boiling points of the hydrides of group 5. Discuss the variation in the boiling points.

 	• • • •	 	 	 		 	••••	••••	 	 	••••	••••		 		••••	••••	 ••••		 	 	 	 	
 		 	 	 		 			 	 				 			• • • •	 		 	 	 	 	
 	• • • •	 	 	 	••••	 	••••	••••	 ••••	 ••••	••••	••••	••••	 	••••	••••	••••	 ••••	••••	 	 ••••	 	 	

(4)

11. Using Table 7 of the Data Booklet, predict and explain which of the bonds O-H, O-N or N-H would be most polar.

(2)

12. Predict and explain which of the following compounds consist of molecules: NaCl, BF $_3$, CaCl $_2$, N $_2$ O, P $_4$ O $_6$, FeS and CBr $_4$.

(2)