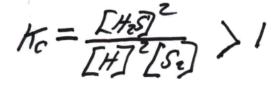
Topic 17 / Review 2019 [11 marks]

1.0 mol of N₂(g), 1.0 mol of H₂(g) and 1.0 mol of NH₃(g) are placed in a 1.0 dm³ sealed [1 mark] flask and left to reach equilibrium At equilibrium the concentration of N₂(g) is 0.8 mol dm⁻³.

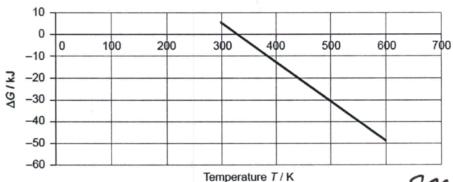
 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

What are the equilibrium concentration of H₂(g) and NH₃(g) in mol dm⁻³?


	[H ₂ (g)] / mol dm ⁻³	[NH ₃ (g)] / mol dm ⁻³	1111	174	= 7NH
A.	0.2	1.2	1102	7-3/12	- E/1/3
(B)	0.4	1.4	- D.Z	-0.6	1.0
C.	0.4	0.4	10. 8	0.4	70.7
D.	0.8	1.2	0.0		1.7

2. At 700 °C, the equilibrium constant, K_c , for the reaction is 1.075×10^8 . $2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g)$

[1 mark]


Which relationship is always correct for the equilibrium at this temperature?

- A. $[H_2S]^2 < [H_2]^2 [S_2]$
- B. $[S_2] = 2[H_2S]$
- C. $[H_2S] < [S_2]$
- (D) $[H_2S]^2 > [H_2]^2[S_2]$

3. The graph shows values of ΔG for a reaction at different temperatures.

[1 mark]

Which statement is correct?

- A. The standard entropy change of the reaction is negative.
- increases at higher temperature, ineous. : AS=+
- B) The standard enthalpy change of the reaction is positive.
- C. At higher temperatures, the reaction becomes less spontaneous.
- D. The standard enthalpy change of the reaction is negative.

Recall, DG = AH-TOS (-) = (+)-T(+)

concentrations of X, Y, W and Z in the equilibrium mixture are 4, 1, 4 and $2 \mod dm^{-3}$ respectively. 4. Components X and Y are mixed together and allowed to reach equilibrium. The

$$X + 2Y \rightleftharpoons 2W + Z$$

What is the value of the equilibrium constant, K_c ?

A.
$$\frac{1}{8}$$

B.
$$\frac{1}{2}$$

Which is correct for an isolated system in equilibrium?

Gibbs free energy	Entropy
maximum	maximum
maximum	minimum
minimum	maximum
minimum	minimum

AG=-RT-lnKo Seeps6 of the study quick!

6. A mixture of 0.40 mol of CO (g) and 0.40 mol of H 2 (g) was placed in a 1.00 dm 3 vessel [1 mark] The following equilibrium was established.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

At equilibrium, the mixture contained 0.25 mol of CO (g). How many moles of H 2 (g) and CH3OH

(g) were present at equilibrium?

	Equilibrium mol of H ₂	Equilibrium mol of CH ₃ OH			
Α.	0.25	0.15			
В.	0.50	0.25			
C.	0.30	0.25			
<u>6</u>	0.10	0.15			

The equation for the reaction between two gases, A and B, is:

[1 mark]

$$2A(g) + 3B(g) \rightleftharpoons C(g) + 3D(g)$$

When the reaction is at equilibrium at 600 K the concentrations of A, B, C and D are 2, 1, 3 and 2 mol dm⁻³ respectively. What is the value of the equilibrium constant at 600 K?

A.
$$\frac{1}{6}$$

B.
$$\frac{9}{7}$$

What is the value of the equilibrium constant at 600 K?
$$K_C = \frac{CC_1 CP_3}{[A] [I] [S]^3} = \frac{(3)(2)}{(2)(1)^3} = 6$$

6

8. A mixture of 2.0 mol of H_2 and 2.0 mol of I_2 is allowed to reach equilibrium in the

[1 mark]

gaseous state at a certain temperature in a $1.0~\mathrm{dm^3}$ flask. At equilibrium, 3.0 mol of HI are present. What is the value of K_c for this reaction?

A.
$$K_{
m c}=rac{(3.0)^2}{(0.5)^2}$$
B. $K_{
m c}=rac{3.0}{(0.5)^2}$

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
2.0 2.0 0
-1.5 -1.5 +3.0

B.
$$K_{\rm c} = \frac{3.0}{(0.5)^2}$$

C.
$$K_{
m c}=rac{(3.0)^2}{(2.0)^2}$$

$$K_{C} = \frac{(3.0)}{(0.5)}$$

D. $K_{\rm c} = \frac{(0.5)^2}{(2.0)^2}$

9. What is the relationship between pK_a , pK_b and pK_w for a conjugate acid–base pair? [1 mark]

A.
$$pK_a = pK_w + pK_b$$

B.
$$pK_a = pK_w - pK_b$$

$$C pK_a \times pK_b = pK_w$$

D.
$$\frac{pK_a}{pK_b} = pK_w$$

10. When gaseous nitrosyl chloride, NOCI (g), decomposes, the following equilibrium is [1 mark] established:

$$2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$$

2.0 mol of NOCl(g) were placed in a 1.0 dm³ container and allowed to reach equilibrium. At equilibrium 1.0 mol of NOCI(g) was present. What is the value of K_c ?

$$H = \frac{(1.0)(0.5)}{1.0}$$

2.0

D.

11. The indicator, HIn is used in a titration between an acid and base. Which statement [1 mark] about the dissociation of the indicator, HIn is correct?

colour A

 $\operatorname{HIn}(\operatorname{aq})
ightleftharpoons \operatorname{H}^+(\operatorname{aq}) + \operatorname{In}^-(\operatorname{aq})$

- In a strongly alkaline solution, colour B would be observed.
- B. In a strongly acidic solution, colour B would be observed.
- C. [In⁻] is greater than [HIn] at the equivalence point.
- D. In a weakly acidic solution colour B would be observed.

(cH+Ht>HO)
: Shifts
Rabel

